
Mlife2d	– a	simple,	parallel,	
implementation	of	Conway’s	“Game	

of	Life”
wgropp.cs.illinois.edu/advmpi-16.tgz

Conway’s	Game	of	Life
• In	this	tutorial,	we	use	Conway’s	Game	of	Life	as	a	
simple	example	to	illustrate	the	program	issues	
common	to	many	codes	that	use	regular	meshes,	
such	as	PDE	solvers
– Allows	us	to	concentrate	on	the	MPI	issues	

• Game	of	Life	is	a	cellular	automaton
– Described	in	1970	Scientific	American
– Many	interesting	behaviors;	see:

• http://www.ibiblio.org/lifepatterns/october1970.html

22

Rules	for	Life
• Matrix	values	A(i,j)	initialized	to	1	(live)	or	0	(dead)
• In	each	iteration,	A(i,j)	is	set	to

– 1	(live)	if	either
• the	sum	of	the	values	of	its	8	neighbors	is	3,	or
• the	value	was	already	1	and	the	sum	of	its	8	neighbors	is	2	or	3

– 0	(dead)	otherwise

3

j

i

j-1 j+1

i+1

i-1

3

Implementing	Life
• For	the	non-parallel	version,	we:

– Allocate	a	2D	matrix	to	hold	state
• Actually	two	matrices,	and	we	will	swap	them	between	steps

– Initialize	the	matrix
• Force	boundaries	to	be	“dead”
• Randomly	generate	states	inside

– At	each	time	step:
• Calculate	each	new	cell	state	based	on	previous	cell	states	
(including	neighbors)

• Store	new	states	in	second	matrix
• Swap	new	and	old	matrices

44

Steps	in	Designing	the	Parallel	
Version

• Start	with	the	“global”	array	as	the	main	object
– Natural	for	output	– result	we’re	computing

• Describe	decomposition	in	terms	of	global	array
• Describe	communication	of	data,	still	in	terms	of	the	global	array
• Define	the	“local”	arrays	and	the	communication	between	them	

by	referring	to	the	global	array

55

The	Global	Data	Structure
• Each	circle	is	a	mesh	point
• Difference	equation	evaluated	at	

each	point	involves	the	four	
neighbors

• The	red	“plus”	is	called	the	
method’s	stencil

• Good	numerical	algorithms	form	a	
matrix	equation	Au=f;	solving	this	
requires	computing	Bv,	where	B	is	
a	matrix	derived	from	A.	These	
evaluations	involve	computations	
with	the	neighbors	on	the	mesh.

The	Global	Data	Structure
• Each	circle	is	a	mesh	point
• Difference	equation	evaluated	at	

each	point	involves	the	four	
neighbors

• The	red	“plus”	is	called	the	
method’s	stencil

• Good	numerical	algorithms	form	a	
matrix	equation	Au=f;	solving	this	
requires	computing	Bv,	where	B	is	
a	matrix	derived	from	A.	These	
evaluations	involve	computations	
with	the	neighbors	on	the	mesh.

• Decompose	mesh	into	equal	sized	
(work)	pieces

Necessary	Data	Transfers

Necessary	Data	Transfers

Necessary	Data	Transfers
• Provide	access	to	remote	data	through	a	halo
exchange	(5	point	stencil)

Necessary	Data	Transfers
• Provide	access	to	remote	data	through	a	halo
exchange	(9	point	with	trick)

The	Local	Data	Structure
• Each	process	has	its	local	“patch”	of	the	global	array
– “g”	gives	indices	and	sizes	in	the	global	array
– “l”	gives	sizes	in	the	local	array
– Always	allocate	a	halo	around	the	patch

gI+lni-1

gI

lnj

gJ gJ+lnj-1

lni

The	Program

• mlife2d.c
– Main	program
– Runs	“Life”	with	5	different	choices	of	halo	exchange	
implementations and	with	2	different	communicators

– Runs	each	of	those	twice
• For	some systems,	the	first	run	will	involve	library	and	
network	initialization,	and	the	timing	will	reflect	that	(it	does	
for	me	on	my	Cray)

– Prints	the	time	taken	for	each	of	the	exchange	
implementation	each	time	

The Program

• moptions.c
– Contains	routine	to	parse command	line	options	
and	to	abort	with	a	message

– Note	use	of	an	MPI	Datatype to	distribute	options	
from	process	0	to	all	other	processes

– Returns	values	in	MLIFEoptions struct.
– Modify	this	file	to	change	defaults	or	add	new	
options	(e.g.,	you	could	select	a	single	exchange	
algorithm	to	run)

The	Program

• patch.c
– Contains routines	that	
• Determine	a	2-d	array	of	processes
• Determine	the	coordinates	and	sizes	of	the	local	patch	
on	each	process	in	the	2-d	array

– Returns the	information	in	the	struct
MLIFEPatchDesc .

The	Program
• mtiming.c

– Contains	the	routines	to	execute	Conway’s	game	of	Life	and	to	
time	the	communication	costs	and	the	time	spent	in	the	“life”	
iteration.

– Timing	returned	in	struct MLIFETiming
– Loop	over	i,j and	that	calls	“MLIFE_nextstate”	implements	the	

stencil	computation	for	“life”
• This	is	not a	high	performance	implementation

– Fortran	users:		The	(*exchange)(patch	…)	is	simply	a	call	to	the	
function	that	was	passed	as	the	routine	parameter	“exchange”.		
In	Fortran,	this	parameter	would	have	been	declared	external.

– Fortran	users:	A	C	trick	is	used	to	“swap”	the	arrays	so	that	the	
next	state	is	always	in	array	“m2”,	computed	from	“m1”.		In	
Fortran,	you	can	do	the	same	thing	with	Fortran	pointers.

The	Program

• These	files	implement	the	halo	exchange:
– mlife2d-pt2pt.c	:	Use	MPI	vector	datatype and	
MPI_Isend and	MPI_Irecv,	with	the	“diagonal	trick”

– mlife2d-pt2ptuv.c	:	Use	user	packing/unpacking	
instead	of	MPI	vector	datatypes (the	UV	in	the	name)

– mlife2d-pt2ptsnd.c	:	Use	MPI_Send and	MPI_Irecv,	
with	MPI	vector	datatype

– mlife2d-pt2pt9.c	:	Use	MPI_Irecv and	MPI_Isend,	send	
directly	to	all	8	neighbors	(do	not	use	diagonal	trick)

– mlife2d-fence.c	:	Use	MPI	RMA	with	Put

The	Program

• Each Exchange	file	implements	three	functions
– An	“Init”. Creates	any	persistent	data	needed	for	
the	exchange.		Returns	a	pointer	to	the	data	(with	
*(void	**)privateData =	(void*)ptr).		Return	a	null	
pointer	if	there	is	no	persistent	data

– An	“End”.	Frees	any	allocated	objects
– An	“Exchange”.	Performs	the	halo	exchange

The	Program

• mlife2d-io-stdout1.c	
– Implements	a	simple,	character	oriented	output	to	
stdout

– Only	for	256	columns
– Entire	display	must	be	visible	(uses	xterm/ascii
terminal	command	sequences)

– Contains	an	init,	“checkpoint”,	finalize,	and	some	
other	functions
• General	interface	to	all	creating	and	restoring	from	
checkpoints;	other	implementations	of	this	routines	in	this	
file	can	use	MPI	IO	to	provide	parallel	I/O	for	large	arrays

Building	and	Running	the	Program

• First	run	configure,	passing	the	name	of	the	C	
compiler	for	MPI	as	the	MPICC	variable.		E.g.,
– ./configure	MPICC=mpcc

• Make
• Run	with	mpiexec or	as	appropriate	for	your	
system:
– mpiexec –n	16	./mlife2d	–x	1000	–y	1000	–i 100

• Run	with	visual	output:
– mpiexec –n	4	./mlife2d	–c	–i 10

